Geometric Morita Equivalence for Twisted Poisson Manifolds
نویسندگان
چکیده
منابع مشابه
Poisson geometry and Morita equivalence
2 Poisson geometry and some generalizations 3 2.1 Poisson manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Dirac structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Twisted structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Symplectic leaves and local structure of Poisson manifolds ...
متن کاملOn the geometric quantization of twisted Poisson manifolds
We study the geometric quantization process for twisted Poisson manifolds. First, we introduce the notion of Lichnerowicz-twisted Poisson cohomology for twisted Poisson manifolds and we use it in order to characterize their prequantization bundles and to establish their prequantization condition. Next, we introduce a polarization and we discuss the quantization problem. In each step, several ex...
متن کاملMorita Equivalence of Twisted Crossed Products
We introduce a natural notion of strong Morita equivalence of twisted actions of a locally compact group on C*-algebras, and then show that the corresponding twisted crossed products are strongly Morita equivalent. This result is a generalization of the result of Curto, Muhly and Williams concerning strong Morita equivalence of crossed products by actions.
متن کاملTwisted Conformal Field Theories and Morita equivalence
The Morita equivalence for field theories on noncommutative two-tori is analysed in detail for rational values of the noncommutativity parameter θ (in appropriate units): an isomorphism is established between an abelian noncommutative field theory (NCFT) and a nonabelian theory of twisted fields on ordinary space. We focus on a particular conformal field theory (CFT), the one obtained by means ...
متن کاملTwisted Geometric Satake Equivalence
Let k be an algebraically closed field and O = k[[t]] ⊂ F = k((t)). For an almost simple algebraic group G we classify central extensions 1 → Gm → E → G(F) → 1, any such extension splits canonically over G(O). Fix a positive integer N and a primitive character ζ : μN (k) → Q ∗ l (under some assumption on the characteristic of k). Consider the category of G(O)biinvariant perverse sheaves on E wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tokyo Journal of Mathematics
سال: 2008
ISSN: 0387-3870
DOI: 10.3836/tjm/1219844831